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Abstract
In diffraction of a plane wave by a non-Hermitian PT symmetric optical lattice,
the sum of the Bragg beam intensities need not be conserved, even though the
gain and loss are equally distributed: the evolution is not unitary. Instead,
different sums are conserved, in which the intensities are weighted with real
numbers (positive or negative); several such sum rules are derived. Two-beam
diffraction from a refractive index of the form constant −a cos x + ib sin x
is studied in detail; the sum rule depends on the balance between the (real)
Hermitian parameter a and the (real) anti-Hermitian parameter b.

PACS numbers: 03.65.Ca, 42.25.Fx, 42.50.Xa, 42.70.Mp

1. Introduction

Following the demonstration that simple PT-symmetric non-Hermitian potentials can have
real spectra, it has been shown that such Hamiltonians can be incorporated consistently into
a modified version of quantum mechanics in which evolution is unitary, involving a new
kind of scalar product (for reviews, see [1, 2]. Now there are proposals for creating non-
Hermitian PT-symmetric systems in the laboratory, for example in optical lattices [3]. In one
implementation, this would involve a volume grating in the form of a slab (figure 1(a)) with
periodic transverse variation of refractive index n(x), which is PT-symmetric because Re n(x)
is even and Im n(x) is odd. We will call this lattice a ‘PT crystal’. Im n(x) > 0 corresponds to
loss (absorption) and Im n(x) < 0 corresponds to gain. A plane wave of light is incident near
the z direction, and emerges in a series of Bragg-diffracted beams. The language is that of
optics, but the arguments apply to PT crystals interacting with any wave, for example neutrons
or atoms satisfying the Schrödinger equation.

The natural question arises: in a PT crystal, is the evolution unitary in the sense that
the sum of intensities of the emerging Bragg beams is equal to the incident intensity, so the
lattice can be called transparent? A suggestion of a positive answer—that evolution might
be unitary—comes from the fact that in a PT crystal gain and loss are equally distributed,
because Im n(x) is odd. Nevertheless, the answer is no: PT crystals are not transparent because
the waves evolving inside them do not explore the gain and loss regions democratically.
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Figure 1. (a) Geometry of Bragg diffraction from an optical lattice; (b) two-beam case.

To demonstrate nontransparency, I show for the simplest model and for several
types of PT crystals that there exists a conserved sum over the emerging beams, but
the intensities are unequally weighted, in contrast to the equal weighting in the sum
rule corresponding to unitary evolution. Section 2 sets up the formalism, section 3
derives the sum rules, and section 4 explores the simplest nontrivial case of two-beam
diffraction (figure 1(b)).

Although the idea of creating PT crystals, with loss balanced by gain, is new, the analysis
of some previous experiments with space-varying purely absorbing lattices is essentially the
same, since the mean loss simply represents an overall exponential decay of the wave. An
example of such ‘effective PT symmetry’ has been demonstrated in atom optics [4, 5]. Related
non-Hermitian phenomena in absorbing crystals are the critical voltage effect in electron
microscopy [6, 7], and the Borrmann effect in x-ray diffraction [7].

2. Formulation

Waves in the lattice are assumed to satisfy the scalar Helmholtz equation

∂2
z � + ∂2

x� + k2n(x)2� = 0. (1)

The following scalings are convenient, involving the incident wavenumber k, the grating period
l and the average refractive index n0:

�(x, z) ≡ exp(ikn0z)ψ(ξ, ζ ), ξ ≡ x

l
,

(2)
ζ ≡ z

2kl2n0
, µ(ξ) ≡ k2l2

(
n2

0 − n(x)2
) = µ(ξ + 2π).

The refractive index of the PT crystal, now represented by µ(ξ ), is the sum of a Hermitian and
an anti-Hermitian part, with the following properties:

µ(ξ) = µh(ξ) + µa(ξ)

µh(ξ) (Hermitian) real even (3)

µa(ξ) (anti-Hermitian) imaginary odd.

Im µa(ξ ) < 0 corresponds to loss, and Im µa(ξ ) > 0 to gain. PT symmetry implies that the
Fourier coefficients µn, defined by

µ(ξ) =
∞∑

n=−∞
µn exp(in ξ), (4)
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are real, with the Hermitian part even in n and the anti-Hermitian part odd in n:

µn = real = µhn + µan, µhn = µh,−n, µan = −µa,−n. (5)

The incident plane wave is inclined at an angle θ0 to the z direction, represented as a
multiple α0 of the Bragg angle by

sin θ0 = α0/kl. (6)

For simplicity, it is assumed that θ0 � 1 and µ(ξ ) is small enough to justify the paraxial
approximation, which with the scalings (2) takes the form

i∂ζψ = −∂2
ξ ψ + µ(ξ)ψ. (7)

Because of the periodicity, the wave in the lattice can be written

ψ(ξ, ζ ) =
∞∑

n=−∞
an(ζ ) exp{i(n + α0)ξ}, (8)

in which an(ζ ) is the amplitude of the nth Bragg beam, with n = 0 denoting the undeflected
beam, and |an(ζ )|2 is the nth Bragg intensity. Substitution into (7) gives the coupled differential
equations

i∂ζ an(ζ ) = (n + α0)
2an(ζ ) +

∞∑
m=−∞

µn−mam(ζ ), an(0) = δn,0. (9)

Later it will sometimes be convenient to write the evolution equation in Dirac notation as

i∂ζ |a(ζ )〉 = H|a(ζ )〉, (10)

in which |a(ζ )〉 is the vector with components an(ζ ), and the Hamiltonian is

H = {Hmn = (n + α0)
2δmn + µn−m}. (11)

A non-Hermitian PT crystal, that is one with loss and gain, for which µa(ξ ) �= 0 in (3), is here
represented by a Hamiltonian matrix that is real but not symmetric. Thus the secular equation
is real, and the eigenvalues, which determine the propagation, have the property, shared by
all PT-symmetric Hamiltonians [8] of being either real or forming complex-conjugate pairs.
The latter situation is termed ‘broken PT symmetry’ [2], and the borderline situation of the
birth of two complex eigenvalues is a non-Hermitian degeneracy [9], often referred to as an
‘exceptional point’.

3. Intensity sum rules

The generalized sum rules we seek take the form

S ≡
∞∑

n=−∞
Sn|an(ζ )|2 = 1, (12)

in which the Sn are real numbers that may be positive or negative. The requirement that S is
conserved (independent of ζ ) is equivalent to

∂ζ S = 0. (13)

From (9), the rate of change of the individual intensities is

∂ζ |an|2 = 2 Im
∞∑

m=−∞
a∗

namµn−m. (14)
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Thus, for any lattice, not necessarily a PT crystal,

∂ζ S = 2 Im
∞∑

n=−∞

∞∑
m=−∞

Sna
∗
namµn−m

= 2 Im
∞∑

n=−∞

∞∑
m=−∞

Sma∗
manµm−n

= −2 Im
∞∑

n=−∞

∞∑
m=−∞

Sma∗
namµ∗

m−n

= Im
∞∑

n=−∞

∞∑
m=−∞

(Snµn−m − Smµ∗
m−n) a∗

nam. (15)

In the simple case of a general Hermitian lattice, which is transparent (neither loss nor
gain) and which need not have PT symmetry,

µ−n = µ∗
n, (16)

so

Snµn−m − Smµ∗
m−n = µn−m(Sn − Sm), (17)

which is satisfied by Sn = Sm = 1, giving the familiar conserved total intensity
∞∑

n=−∞
|an(ζ )|2 = constant =

∞∑
n=−∞

|an(0)|2 = 1. (18)

In the first nontrivial case to be considered, µ(ξ ) is doubly restricted. First, there is no
Hermitian part, that is µhn = 0 (‘pure non-Hermitian PT crystal’), so

Snµn−m − Smµ∗
m−n = (Sn + Sm)µa,n−m. (19)

Second, the anti-Hermitian part has no even Fourier components. Thus

µ(ξ) = 2i
∞∑

n=1

µa,2n+1 sin{(2n + 1)ξ}, (20)

representing crystals odd with respect to ξ = π as well as ξ = 0 (or, alternatively stated, even
with respect to ξ = π/2). Then n−m is odd in (19), which can therefore be satisfied by

Sn = (−1)n, (21)

leading to (13) and the alternating-sign sum rule
∞∑

n=−∞
(−1)n|an(ζ )|2 = constant =

∞∑
n=−∞

(−1)n|an(0)|2 = 1. (22)

In such PT crystals, the total intensity satisfies the inequality
∞∑

n=−∞
|an(ζ )|2 = 1 +

∞∑
n=−∞

|a2n+1(ζ )|2 � 1, (23)

that is, gain always dominates loss, demonstrating that these crystals are not transparent.
For PT crystals in which the only nonvanishing refractive-index coefficients are µ1 and

µ−1, the transition between the Hermitian and alternating-sign sum rules can be exhibited
explicitly. For such lattices,

µ(ξ) = µ1 exp(iξ) + µ−1 exp(−iξ) = 2 µh1 cos ξ + 2i µa1 sin ξ. (24)
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In this case, the requirement that the last member in (15) vanishes is

Snµ1 − Sn−1µ−1 = 0. (25)

The solution is

Sn =
(

µh1 − µa1

µh1 + µa1

)n

, (26)

yielding the sum rule
∞∑

n=−∞

(
µh1 − µa1

µh1 + µa1

)n

|an(ζ )|2 = 1. (27)

This reproduces (18) in the Hermitian case µa1 = 0, and the pure non-Hermitian PT case (22)
when µh1 = 0.

It is natural to ask if a sum rule exists for a general PT crystal, in which all coefficients
µhn and µan can be nonzero. I do not know the answer, but offer the following formulation of
the problem, in terms of an operator defined by the diagonal matrix of the desired sum rule
coefficients:

S ≡ {Snδnm}. (28)

The sum in (12) can be written

S = 〈a(ζ )|S|a(ζ )〉 = 〈a(0)| exp(iζH†)S exp(−iζH)|a(0)〉, (29)

whose conservation requires

exp(iζH†)S exp(−iζH) = S, i.e. SHS−1 = H†. (30)

It is an interesting exercise (not given here) to verify this for the three cases already considered,
but the general case remains open.

For a general S, not necessarily diagonal as in (28), (30) is the condition for H to
be pseudo-Hermitian [10]. However, if S is not diagonal the conserved quantity S in (29)
contains cross-terms of the form a∗

man, and so is not an intensity sum rule in the sense of
involving only the quantities |an|2; we will see an example later.

4. Two-beam example

Here we consider the PT crystal (24), for which if µa1 > 0 the region 0 < ξ < π corresponds
to gain and π < ξ < 2π corresponds to loss. We also assume |µh1| � 1 and |µa1| � 1, and
light incident close to the Bragg reflection angle (figure 1(b)), that is

α0 = − 1
2 + δ, |δ| � 1. (31)

Then all coefficients in the wave (8) are negligible except a0 and a1, and the recurrence relation
(9) can be expressed in terms of a 2 × 2 truncation of the matrix Hamiltonian (11):

H =
(

δ2 +
1

4

) (
1 0
0 1

)
+

(−δ µ−1

µ1 δ

)

=
(

δ2 +
1

4

) (
1 0
0 1

)
+

( −δ µh1 − µa1

µh1 + µa1 δ

)
. (32)

The eigenvalues,

λ± = δ2 + 1
4 ±

√
δ2 + µ1µ−1

= δ2 + 1
4 ±

√
δ2 + µ2

h1 − µ2
a1 ≡ λ̄ ± 1

2�λ, (33)
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are real if µ2
a1 < δ2 + µ2

h1 (unbroken PT symmetry) and complex conjugates if µ2
a1 > δ2 + µ2

h1
(broken PT symmetry), with a non-Hermitian degeneracy when µ2

a1 = δ2 +µ2
h1, corresponding

to the eigenvalue λ± = λ̄ = δ2 + 1
4 . For a given PT crystal, that is µa1 and µh1 fixed, degeneracy

corresponds to incident light directions

δ = ±
√

µ2
a1 − µ2

h1, (34)

provided µ2
a1 > µ2

h1, that is, the anti-Hermitian part of the refractive index dominates the
Hermitian part. Between the directions (34), spanning the Bragg angle δ = 0, PT symmetry is
broken; outside this range, the symmetry is unbroken. In the opposite situation, of a Hermitian-
dominated lattice, that is µ2

a1 < µ2
h1, there are no degeneracies and the PT symmetry is always

unbroken.
Evolution of the wave in the lattice is determined by the 2 × 2 matrix exponential

exp(−iζH) = exp{−iζ λ̄}
[

cos

(
1

2
ζ�λ

) (
1 0
0 1

)

− 2i

�λ
sin

(
1

2
ζ�λ

)( −δ µh1 − µa1

µh1 + µa1 δ

)]
. (35)

Thus the amplitudes are

a0(ζ ) =
[

cos

(
1

2
ζ�λ

)
+

2iδ

�λ
sin

(
1

2
ζ�λ

)]
exp{−iζ λ̄}

(36)

a1(ζ ) = −2i(µh1 + µa1)

�λ
sin

(
1

2
ζ�λ

)
exp{−iζ λ̄}.

For unbroken PT symmetry, �λ is real and the amplitudes oscillate. For broken PT symmetry,
�λ is imaginary and the sin function is hyperbolic, giving exponential variation of the
amplitudes. In both cases, they satisfy the sum rule (27), which for this two-beam case
is

|a0(ζ )|2 +

(
µh1 − µa1

µh1 + µa1

)
|a1(ζ )|2 = 1. (37)

The total intensity is

|a0(ζ )|2 + |a1(ζ )|2 = 1 +
2 sin2

(
1
2ζ�λ

)
µa1(µh1 + µa1)

δ2 + µ2
h1 − µ2

a1

. (38)

If µ2
a1 < µ2

h1, i.e. the symmetry is always unbroken, and µa and µh have opposite signs, the
total intensity is always less than unity: loss dominates gain. In all other cases, which may
correspond to broken or unbroken symmetry depending on the value of δ, the total intensity
exceeds unity: gain dominates loss. (Note that the factor sin2

(
1
2ζ�λ

)
/
(
δ2 + µ2

h1 − µ2
a1

)
is

never negative.)
At the degeneracy, that is with incident direction (34), (36) reduces to

a0 (ζ ) =
[

1 + iζ
√

µ2
a1 − µ2

h1

]
exp{−iζ λ̄}

(39)
a1(ζ ) = −iζ(µh1 + µa1) exp{−iζ λ̄}.

As ζ increases, the state rotates to become parallel to the single degenerate eigenvector of
(32), namely (

a0 (ζ )

a1 (ζ )

)
∝

( √
µa1 − µh1

−√
µa1 + µh1

)
. (40)
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As has been noted before, for example in crystal optics [11–13], this linear growth and rotation
are characteristic of evolution generated by operators with a non-Hermitian degeneracy. The
intensities are

|a0|2 = 1 + ζ 2(µ2
a1 − µ2

h1

)
, |a1|2 = ζ 2(µh1 + µa1)

2, (41)

so in this marginal case, as with broken PT symmetry, gain dominates loss: the total intensity
(which satisfies the sum rule (37)) always exceeds unity because µ2

a1 > µ2
h1.

The wave intensity at the degeneracy is, from (8) and (39),

|ψ(ξ, ζ )|2 = 1 + 2ζ 2(µa1 + µh1)
2

(
1 −

√
µa1 − µh1

µa1 + µh1
cos ξ

)
+ 2ζ(µa1 + µh1) sin ξ. (42)

The last term breaks the symmetry between the gain and loss regions, as claimed in the
Introduction, and is larger in the gain region (as is physically obvious). It follows from (36)
that the same result holds away from the degeneracy when PT symmetry is broken.

Finally, an example of a nondiagonal matrix S, satisfying (30) with the two-beam
Hamiltonian H (32), is just the nontrivial symmetric part of H:

S =
(−δ µh1

µh1 δ

)
. (43)

The corresponding conserved quantity (29), which is not an intensity sum rule because it
contains cross terms, is

|a0(ζ )|2 − |a1(ζ )|2 − 2µh1

δ
Re(a∗

0(ζ )a1(ζ )) = 1. (44)

This is easily confirmed from (36), for broken as well as unbroken PT symmetry.
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